Motivation & Objectives

Agent-oriented programing (AOP)
- An approach to complex (intelligent) decision-making.
- Many approaches: BDI/high-level/reactive programming.
- Many systems/platform: JACK, JADEX, GOAL, 3APL, etc.

Logics for strategic reasoning/verification
- Frameworks for reasoning about what agents “can achieve”.
- Existing verification tools: MCMAS, SPIN, NuSMV, LTSmin, etc.

Objectives
1. Relate agent programming languages and agent theories.
2. Reason about agent’s “know-how” and “goals”.
3. Reason about coalition of agents with capabilities.

BDI Architecture

ATL(ES) Model Checking
Reasoning about abilities of a coalition: what can agents A achieve?
ATL concurrent game structure $M = \langle A, Q, P, Act, d, V, \sigma \rangle$, where:
- Q - finite set of states.
- P - finite set of propositions.
- Act - finite set of actions.

ATL Model Checking: Does coalition A has a joint strategy to enforce ϕ?
- Check whether $M \models \langle A \rangle \varphi$
- A strategy is a mapping from (histories of) states to actions.

ATL(ES): What can agents achieve under some commitments?
- Extended structure $M = \langle A, Q, P, Act, d, V, \sigma, S \rangle$:
 - S: set of named fixed strategies (e.g., safe, quick, etc.)
- Commitment (partial) function $\rho: A \rightarrow S$ states that same agents are committed to certain named strategies.

$M \models \langle A \rangle \varphi_\rho$: Coalition A can enforce φ under commitments ρ.

BDI-ATLES: ATL for BDI Agents
1. Assume a set of available capabilities C, that is, sets of plans.
2. Extend ATL coalition modality to account for plans and goals:
 - Check whether $M \models \langle A \rangle \omega, \varphi_\rho$
 - ω defines the plans of BDI agents.
 - φ defines the initial goals of BDI agents.
3. Assume programmed agents adhere to BDI practical reasoning:
 - Agents follow their plans based on its goals and beliefs.
4. Extend semantics to account for BDI practical reasoning.

BDI-ATLES: Semantics
Concurrent game structure $M = \langle A, Q, P, Act, d, V, \sigma, C \rangle$, where:
- $A, Q, P, Act, d, V, \sigma$ as in ATL(ES).
- Capability function $C: \text{CapTerms} \rightarrow \mathcal{F}(\Pi_{\text{acts}})$
 - maps capability terms to their (finite) set of plans.
 - plans are of the form $\phi(a)\psi$.

BDI-ATLES Model Checking Task
Given capability and goal assignments ω and φ for BDI agents $\mathcal{A}_{BDA} \subseteq A$, check whether $M \models \langle A \rangle \omega, \varphi_\rho$.

Coalition A can enforce φ true when \mathcal{A}_{BDA} are BDI agents
1. Define set of rational strategies $\mathcal{R}^\text{rat}_{\Pi_{\text{acts}}}$:
 - ATL strategies for agent agt in M that are “rational” when the agent is equipped with plan-library Π and has initial goals G.
 - Strategies that can only generate “rational traces” in the model.
2. BDI agents relative to ω, φ may only follow rational strategies.
3. Other agents can follow any (legal) strategy (as in ATL).

BDI-ATLES: Results
We restrict to reactive plans $\phi(a)\psi$, where $a \in Act$.
1. $\models \langle A \rangle \omega, \varphi_\rho \supseteq \langle A \rangle \omega, \varphi_\rho$ holds, provided that:
 - coalition is not reduced;
 - BDI agents outside the coalition remain BDI agents;
 - (but non-BDI agents can become BDI)
 - the goals and capabilities of
 - BDI agents in the coalition: not reduced;
 - BDI agents outside the coalition: not augmented.
2. $M \models \langle A \rangle \omega, \varphi_\rho$ can be checked in exponential time on the number of agents $\mid A \mid$ and goals $\max_{a \in A}(\mid \varphi(a) \mid)$.

Limitations and Future work
- Common knowledge: one state for every agent.
- Coalitions \neq BDI Multi-agent systems.
- Lower bound complexity?
- Complex plans:
 - Sequence of actions?
 - Plan interleaving?
 - Subgoals?
 - Plan failure & recovery?