Optimality Properties of Planning via Petri Net Unfolding: A Formal Analysis

Sebastian Sardina and Sarah Hickmott

RMIT University
Australia

ICAPS 2009
Planning via Directed Unfolding

1. Forward search partial order planning
 - STRIPS, SAS+
 - Synthesizes a partially ordered plan \(\langle A, \prec \rangle \)
 - E.g. \(\pi = \langle \{ o_1, o_2, o_3 \}, \{ o_1 < o_3 \} \rangle \)
 - True concurrency semantics

2. Advantages:
 - Explicit concurrency and causal relations
 - Notion of a state
 - \(\Rightarrow \) state-based heuristics to guide and prune
 - Parallel plans
 - \(\Rightarrow \) "faster and more flexible"

3. However:
 - Lack understanding of the partial order semantics accounted by:
 - solution space;
 - plans generated.
 - \(\therefore \) How concurrent are the plans obtained by this approach?
Planning via Directed Unfolding

1. Forward search partial order planning
 - STRIPS, SAS+
 - Synthesizes a partially ordered plan $\langle A, \prec \rangle$
 - E.g. $\pi = \langle \{ o_1, o_2, o_3 \}, \{ o_1 < o_3 \} \rangle$
 - True concurrency semantics

2. Advantages:
 - Explicit concurrency and causal relations \implies decomposition
 - Notion of a state \implies state-based heuristics to guide and prune
 - Parallel plans \implies “faster and more flexible”
Planning via Directed Unfolding

1. Forward search partial order planning
 - STRIPS, SAS+
 - Synthesizes a partially ordered plan $\langle A, \prec \rangle$
 - E.g. $\pi = \langle \{ o_1, o_2, o_3 \}, \{ o_1 < o_3 \} \rangle$
 - True concurrency semantics

2. Advantages:
 - Explicit concurrency and causal relations \implies decomposition
 - Notion of a state \implies state-based heuristics to guide and prune
 - Parallel plans \implies “faster and more flexible”

3. However:
 - Lack understanding of the partial order semantics accounted by:
 - solution space;
 - plans generated.

 \therefore How concurrent are the plans obtained by this approach?
Talk Overview

Planning Via Unfolding

1. What it is
2. Concurrency Semantics
3. Optimality properties wrt flexibility and execution time
1. Cast to Petri net executability problem

- Variable-value assignments → Places (circles)
- Operators → Transitions (boxes)
- State → Tokens (dots)
- Goal transition t_g
- Example

 shut-door = $\langle \{\}, \{\text{closed}\} \rangle$
 heater-on = $\langle \{\neg \text{on}\}, \{\text{on}\} \rangle$
2. Unfold Petri net to find t_g

- Exact reachability analysis
- Preserves and exploits causal relations in the Petri net structure
- Unrolls the space of parallel plans captured by the Petri net

Directed Unfolding:
- Value function + planning heuristics
- Prune and guide toward solution plan

```
¬closed
  ↓
shut₁
  ↓
closed
  ↓
shut₂
  ↓
closed'
  ↓
tg
  ↓
tg'

¬on
  ↓
heater-on
  ↓
on
```
Concurrenty Semantics

1. What is the concurrency semantics of plans synthesised using this approach?
 - What are the restrictions on two actions executing concurrently?

2. How does it compare to the standard notion of concurrency induced by Smith and Weld’s [1999] definition of independent actions?
Independent Actions

Two actions are independent iff
1. Their effects don’t contradict
2. Their preconditions don’t contradict
3. The preconditions for one aren’t clobbered by the effect of the other.

Example

have-cake = ⟨ {cake}, {} ⟩ eat-cake = ⟨ {}, {¬cake} ⟩

By restriction 3, not independent actions
Independent Actions

Two actions are independent iff
1. Their effects don’t contradict
2. Their preconditions don’t contradict
3. The preconditions for one aren’t clobbered by the effect of the other.

Example

have-cake = ⟨ {cake}, {} ⟩ eat-cake = ⟨ {}, {¬cake} ⟩

By restriction 3, not independent actions

A plan respects independence iff for any two non-independent actions a and b the plan ensures that either a < b or b < a.
Strongly Independent Actions

Two actions are strongly independent in state S iff

1. They are independent
2. Any common postcondition already holds true in state S.

Example

\[
\text{set-}x = \langle \{ \}, \{ x \} \rangle, \quad \text{set-all} = \langle \{ \}, \{ x, y, z \} \rangle
\]

- Strongly independent in state $S = \langle x, \ldots \rangle$
- Not strongly independent in state $S' = \langle \neg x, \ldots \rangle$
Strongly Independent Actions

Two actions are strongly independent in state S iff
1. They are independent
2. Any common postcondition already holds true in state S.

Example

\[\text{set-x} = \langle \{\}, \{x\} \rangle, \quad \text{set-all} = \langle \{\}, \{x, y, z\} \rangle \]

Strongly independent in state $S = \langle x, \ldots \rangle$
Not strongly independent in state $S' = \langle \neg x, \ldots \rangle$

A plan respects strong independence iff at any possible state S during plan execution all possible concurrent actions are strongly independent in S.

Related to locks/monitors; read/write access [Hoare 1974]
Reduces to independence if original operators are toggling
Theorem

A plan generated via unfolding respects strong independence for the initial state of the planning problem.

But any totally ordered plan will respect strong independence...
Unfolding Generates Strongly Independent Plan

Theorem
A plan generated via unfolding respects strong independence for the initial state of the planning problem.

But any totally ordered plan will respect strong independence...

Take-home message:
- Planning via unfolding “conforms” to the strong independence notion of concurrency
- If the original operators are toggling, then it “conforms” to independence notion of concurrency
Plan Flexibility

Partially-ordered plans are in principle more flexible in that they may avoid over-committing to action orderings

- Scheduler can have alternative execution realizations to choose from
 - e.g. Need to post-process or adapt a plan for actions with deadlines and earliest release times

- Execution time may be reduced when actions can be executed in parallel
Plan validity w.r.t. Strong Independence

A partially ordered plan π is \mathcal{P}-valid for planning problem \mathcal{P} iff

- All linearizations of π solve \mathcal{P}, and
- π respects strong independence for the initial state of \mathcal{P}.
Plan De/reordering

Can we remove (deorder) or change (reorder) the constraints from a plan synthesized via the unfolding approach?

\[\text{catch-train} < \text{cook-dinner} < \text{eat-dinner} < \text{read-paper}\]

\[\downarrow \text{deorder} - \text{remove constraints}\]

\[\text{catch-train} < \text{cook-dinner} < \{\text{eat-dinner, read-paper}\}\]
Plan De/reordering

Can we remove (deorder) or change (reorder) the constraints from a plan synthesized via the unfolding approach?

catch-train < cook-dinner < eat-dinner < read-paper

\[\Downarrow \text{deorder} - \text{remove constraints}\]

catch-train < cook-dinner < \{eat-dinner, read-paper\}

\[\Uparrow \text{reorder} - \text{change constraints}\]

\{catch-train, read paper\} < cook-dinner < eat-dinner
Minimal De/re-ordering

Consider plan π which is \mathcal{P}-valid:

- π is a **minimal de/re-ordering wrt flexibility** if you can’t de/re-order it to reduce the number of constraints and retain \mathcal{P}-validity.

- π is a **minimal de/re-ordering wrt execution time** if you can’t de/re-order it to reduce the execution time and retain \mathcal{P}-validity.

[Backstrom 1998] gave similar definitions in the context of plans which respect independence.
Optimality Guarantees (1/2)

Theorem

Any plan synthesized via the unfolding approach is a minimal deordering wrt flexibility.

- i.e No constraint can be removed without rendering the plan invalid.
- A minimal deordering wrt flexibility ⇒ a minimal deordering wrt execution time.
Optimality Guarantees (1/2)

Theorem

Any plan synthesized via the unfolding approach is a minimal deordering wrt flexibility.

- i.e. No constraint can be removed without rendering the plan invalid.
- A minimal deordering wrt flexibility \Rightarrow a minimal deordering wrt execution time.

Theorem

All solution plans which are minimally deordered wrt flexibility exist in the unfolding space.

- These results extend to all plans in the unfolding space (not necessarily solutions)

i.e. planning via unfolding “conforms” to strong independence
Theorem

If the unfolding is directed to prefer faster plans, then the plan synthesized is a minimal reordering wrt execution time.

- Reordering a plan to be optimal wrt execution time is (still) NP-hard in the context of strong independence requirements.

In fact the stronger result is proven:

- Plan which is optimal among all minimal reorderings wrt time.
- Can not make a faster plan by changing the actions
In Summary

- If the original operators are **toggling** then the unfolding space consists of plans which conform to **independence**.

 - Plan(s) with minimum makespan, as defined by Smith and Weld [1999], exist in the unfolding space and can be obtained using an appropriate search procedure.
In Summary

- If the original operators are **toggling** then the unfolding space consists of plans which conform to **independence**.

 - Plan(s) with minimum makespan, as defined by Smith and Weld [1999], exist in the unfolding space and can be obtained using an appropriate search procedure.

- If the original operators are **not toggling**, then the unfolding space consists of plans which conform to **strong independence**.

 - Stronger restrictions on concurrent execution than independence
 - Analogous to kind of concurrency captured by monitors for thread synchronisation.
References

[Backstrom 1998]

[Hoare 1974]